jueves, 21 de abril de 2016

El porque vuelan los aviones.

¿Por que los aviones vuelan?


La respuesta más sencilla sería 

decir que los aviones vuelan 

porque están diseñados para 

volar. De la misma manera que un 

barco transatlántico, de más de 

100.000 toneladas, tiene una 

determinada forma y diseño 

interior que le permite mantenerse a flote, un avión tiene una forma que le permite mantenerse en el aire. No se trata de algo mágico. Lo raro y mágico sería que los aviones no pudiesen volar teniendo la forma que tienen. La clave de su forma está en las alas y en el diseño que éstas tienen. 

Tanta capacidad tiene el aire en movimiento?

De alguna forma se tiende a menospreciar la capacidad del aire. Es cierto que si tiramos una piedra al suelo parece como si hubiese un vacío, nada frena a la piedra. Lo mismo ocurre si levantamos la mano estirando el brazo y lo dejamos caer. Parece que el aire no está por la labor de evitar que los objetos caigan al suelo. Pero todos hemos comprobado lo difícil que resulta andar cuando hace bastante viento, hemos visto imágenes de los devastadores efectos de los tornados siendo capaces de levantar coches, camiones o incluso casas y, alguna vez, hemos sacado nuestra mano por la ventanilla del coche para “jugar” a mantenerla en el aire gracias a la velocidad del vehículo.

¿CÓMO GENERAN LAS ALAS SUSTENTACIÓN?

Por que vuelan los aviones: mano sacada ventana
¿Por qué vuelan los aviones? Por el mismo motivo que la mano se mantiene en el aire: el flujo de aire. (Foto: TijanaM/shutterstock)
Siguiendo con el ejemplo anterior, uno puede comprobar cómo nos resulta más fácil mantener nuestra mano suspendida en el aire cuanto mayor sea la velocidad del vehículo. Con las alas de un avión ocurre lo mismo: cuanto mayor sea la velocidad del avión respecto al aire, mayor es la fuerza de sustentación. Por este motivo, para despegar, los aviones necesiten una pista en donde poder acelerar hasta alcanzar una determinada velocidad.
También podemos comprobar cómo variando la inclinación de nuestra mano podemos actuar sobre la fuerza que la eleva. Lo mismo ocurre con las alas de los aviones, y esa  inclinación es conocida como el ángulo de ataque. Para variar el ángulo de ataque se hace rotar todo el avión, subiendo o bajando el morro, gracias a unas superficies de control situadas en la cola: es lo que se hace en el despegue al alcanzar la velocidad de “rotación”.
Conseguir sustentación no es complicado. Lo complicado es conseguirlo de manera eficiente, que permita elevar pesos considerables sin generar mucha resistencia que nos frene. Nuestras manos no tienen la forma ideal. Sin embargo, las alas de los aviones tienen un diseño muy estudiado para lograr una gran eficiencia. Una característica muy importante en el diseño de las alas es la forma del llamado perfil alar, que consiste en una sección transversal del ala vista desde un lateral. El perfil alar no es algo fijo, dependerá de las características del avión y según el uso que se le vaya a dar (acrobacia, transporte de pasajeros, combate, recreación, etc), pero suele haber una característica común: la parte delantera (borde de ataque) redondeada y su zona opuesta (borde de salida) más afilada.
(a) ángulo de ataque pequeño (b) ángulo de ataque grande
(Foto: How do wings work / Holger Babinsky)
Para entender mejor lo que ocurre en el ala de un avión, lo mejor que podemos hacer es cambiar nuestro sistema de referencia e imaginarnos un perfil alar fijo y una corriente de aire que se desplaza de izquierda a derecha incidiendo sobre él (al fin y al cabo, lo importante es el viento relativo). Esto es lo que se realiza en los túneles de viento y, añadiendo un poco de humo en distintos puntos, podemos apreciar lo siguiente:
El flujo de aire se divide tomando dos caminos, uno que pasa por encima del perfil alar y otro por debajo. La forma y la inclinación del perfil alar respecto a la corriente de aire (ángulo de ataque) consiguen que los dos caminos no sean simétricos, que las partículas de aire tomen trayectorias curvas, que varíen su velocidad y que aparezca una distribución de presiones peculiar. En concreto, debajo del perfil alar la presión aumenta y las partículas de aire se ven frenadas, y por encima del perfil la presión disminuye y las partículas aceleran. Esta diferencia de presiones entre los dos lados, más presión abajo y menor presión arriba, crea un desequilibrio que da lugar a una fuerza hacia arriba que llamamos sustentación.

No hay comentarios:

Publicar un comentario